(CTA)3[SiW12]-Li+-MMT: Efficient nanocatalyst for the synthesis of 3,4-dihydropyrimidin-2(1H)-ones under solvent-free conditions

Authors

  • Esmayeel Abbaspour-Gilandeh Esmayeel Abbaspour-Gilandeh*, Mehraneh Aghaei-Hashjin, Hashem Azizi Young Researchers and Elites Club, Ardabil Branch, Islamic Azad University, Ardabil, Iran.
  • Hashem Azizi Young Researchers and Elites Club, Ardabil Branch, Islamic Azad University, Ardabil, Iran.
Abstract:

A highly practical and efficient preparation of 3,4-Dihydropyrimidin-2(1H)-one derivatives was developed via an efficient and simple nanocatalyst and promoted multi-component reaction of ethyl acetoacetate, aromatic aldehyde, and urea in the presence of a catalytic amount of (CTA)3[SiW12]-Li+-MMT under solvent-free conditions. In comparison to the conventional methods, the salient features of this method are green reaction conditions, short reaction time, high quantitative yields, high atom economy, low cost, no column chromatographic separation and easy isolation of products. All the products were characterized by melting point, IR, 1HNMR and 13CNMR and were determined by comparison of their spectra with those of valid samples.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

Highly efficient multicomponent Biginelli’s synthesis of 3,4-dihydropyrimidin-2(1H)-ones catalyzed by Al-MCM-41 under solvent-free conditions

In this study, an efficient and green process for the synthesis of dihydropyrimidin-2(1H)-ones from aromatic benzaldehydes, ethyl acetoacetate and urea using Al-MCM-41 as heterogeneous catalyst and microreactor under solvent-free conditions has been developed. The advantages of this method are easy work-up procedure, regeneration of the catalyst, clean and neutral reaction conditions.

full text

Highly efficient multicomponent Biginelli’s synthesis of 3,4-dihydropyrimidin-2(1H)-ones catalyzed by Al-MCM-41 under solvent-free conditions

In this study, an efficient and green process for the synthesis of dihydropyrimidin-2(1H)-ones from aromatic benzaldehydes, ethyl acetoacetate and urea using Al-MCM-41 as heterogeneous catalyst and microreactor under solvent-free conditions has been developed. The advantages of this method are easy work-up procedure, regeneration of the catalyst, clean and neutral reaction conditions.

full text

4-Sulfobenzoic Acid as an Efficient Catalyst for the Preparation of 3,4-dihydropyrimidin-2-(1H)-ones Under Solvent-free Conditions

In this research, one-pot three-component synthesis of 3,4-dihydropyrimidin-2-(1H)-ones havebeen developed using Biginelli reaction from the interaction between ethyl/methyl acetoacetate,aromatic aldehydes, and urea/thiourea in the presence of 4-sulfobenzoic acid as a new, effective,inexpensive, and available bronsted acid. Avoidance of toxic and dangerous solvents, easy isola...

full text

Efficient synthesis of trisphenols using reduced sulfonated graphene nanocatalyst under solvent free conditions

This study reports a new methodology for the efficient synthesis of trisphenol compounds using the reaction of 2,6-bis(hydroxymethyl) phenols with phenols under heterogeneous conditions. A sulfonated reduced graphene oxide (RGO-SO3H) nanocatalyst was used to promote the reaction under solvent-free conditions. A range of trisphenol compounds were produced in the presence of this c...

full text

Efficient synthesis of trisphenols using reduced sulfonated graphene nanocatalyst under solvent free conditions

This study reports a new methodology for the efficient synthesis of trisphenol compounds using the reaction of 2,6-bis(hydroxymethyl) phenols with phenols under heterogeneous conditions. A sulfonated reduced graphene oxide (RGO-SO3H) nanocatalyst was used to promote the reaction under solvent-free conditions. A range of trisphenol compounds were produced in the presence of this c...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 8  issue 2

pages  89- 94

publication date 2018-06-01

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023